THE GLOWDOG

A lightweight sport-scale Cessna L-19 that can glow in the dark!

With the fuselage on its back, I used weights to hold the assembly on the top view aligned with the centerline. I used L-shaped foam blocks (attached with two-sided tape) to hold the remaining formers in position over the plans. Masking tape was used to hold the fuselage side sheeting against the formers while the glue set. I assembled the aft end first. While the adhesive set up, I cut the formers for the front as well as the gear plates. Be sure that the landing gear wire is bent correctly and measures evenly from the work surface when installed in the fuselage.

While the fuselage was being held in position over the plans with the L-blocks, I curled and cut 3mm foam sheets to fit between the formers working from the gear wire fore and aft. A minimum amount of adhesive is needed on the sheeting edges. I used 1⁄4-inch masking tape to hold the panels securely in position. With the belly sheeted, the fuselage is strong enough to turn over and remove the L-block supports.

The horizontal stabilizer is now needed to hold the tail true before sheeting the fuselage top.

THE GLOWDOG

A lightweight sport-scale Cessna L-19 that can glow in the dark!

With the fuselage on its back, I used weights to hold the assembly on the top view aligned with the centerline. I used L-shaped foam blocks (attached with two-sided tape) to hold the remaining formers in position over the plans. Masking tape was used to hold the fuselage side sheeting against the formers while the glue set. I assembled the aft end first. While the adhesive set up, I cut the formers for the front as well as the gear plates. Be sure that the landing gear wire is bent correctly and measures evenly from the work surface when installed in the fuselage.

While the fuselage was being held in position over the plans with the L-blocks, I curled and cut 3mm foam sheets to fit between the formers working from the gear wire fore and aft. A minimum amount of adhesive is needed on the sheeting edges. I used 1⁄4-inch masking tape to hold the panels securely in position. With the belly sheeted, the fuselage is strong enough to turn over and remove the L-block supports. The horizontal stabilizer is now needed to hold the tail true before sheeting the fuselage top.

THE GLOWDOG

A lightweight sport-scale Cessna L-19 that can glow in the dark!

With the fuselage on its back, I used weights to hold the assembly on the top view aligned with the centerline. I used L-shaped foam blocks (attached with two-sided tape) to hold the remaining formers in position over the plans. Masking tape was used to hold the fuselage side sheeting against the formers while the glue set. I assembled the aft end first. While the adhesive set up, I cut the formers for the front as well as the gear plates. Be sure that the landing gear wire is bent correctly and measures evenly from the work surface when installed in the fuselage.

While the fuselage was being held in position over the plans with the L-blocks, I curled and cut 3mm foam sheets to fit between the formers working from the gear wire fore and aft. A minimum amount of adhesive is needed on the sheeting edges. I used 1⁄4-inch masking tape to hold the panels securely in position. With the belly sheeted, the fuselage is strong enough to turn over and remove the L-block supports. The horizontal stabilizer is now needed to hold the tail true before sheeting the fuselage top.

THE GLOWDOG

A lightweight sport-scale Cessna L-19 that can glow in the dark!

With the fuselage on its back, I used weights to hold the assembly on the top view aligned with the centerline. I used L-shaped foam blocks (attached with two-sided tape) to hold the remaining formers in position over the plans. Masking tape was used to hold the fuselage side sheeting against the formers while the glue set. I assembled the aft end first. While the adhesive set up, I cut the formers for the front as well as the gear plates. Be sure that the landing gear wire is bent correctly and measures evenly from the work surface when installed in the fuselage.

While the fuselage was being held in position over the plans with the L-blocks, I curled and cut 3mm foam sheets to fit between the formers working from the gear wire fore and aft. A minimum amount of adhesive is needed on the sheeting edges. I used 1⁄4-inch masking tape to hold the panels securely in position. With the belly sheeted, the fuselage is strong enough to turn over and remove the L-block supports. The horizontal stabilizer is now needed to hold the tail true before sheeting the fuselage top.
Forming a “bridge” with sticks between the worktable and sheeting edges allows pressure to be concentrated in difficult areas. Allow the tail group adhesive to dry overnight.

Use a razor to trim away the excess sheeting from around the tail surfaces about ¼ inch from the edge support. Save the material for later use. I used a sanding block to shape the frames to match the airfoil shape on the other side. Most of the edge support was removed and I stopped sanding when the sanding bar started to sand the sheeting edge. I cut the control surfaces free, did the hinge work and installed LED wiring. After all the wiring tested out fine, I was ready to close everything up.

With the tail group lying flat on the work surface, I used the scrap sheeting to support under the outer edges and repeated the sheeting process. After the glue had set, I roughly trimmed the edges then sanded them smooth. A razor is used to separate the control surfaces. Using the balsa spar to guide the razor makes this step easy—just be careful not to cut the LED wiring. I then bonded the horizontal stabilizer onto the fuselage’s tail, wired the LEDs and installed the control pushrods. With the landing gear wire sitting flat on the work surface, I checked the top of F-6 was level and then supported the stabilizer with equal height blocks to remove any twist from the structure before sheeting the top of the fuselage.

Next, I cut off the tabs on F-7 that supported the fuselage while it was inverted and completed the wing saddle. To wrap things up, I installed the battery tray and...
motor mount components. The formed plastic cowl and formed wingtips for the Glowdog are available by contacting me at sparky2@att.net. The cooling holes in the cowl are perfectly placed in order to cool the Castle Creations ESC and lighting system BEC.

WING ASSEMBLY

The building surface used was two pieces of equal thickness wood with one end elevated 1/2 inch to form the needed dihedral. Each panel pair was centered over the building board pivot point until all the ribs were in place. Assemble the wing structure on top of the lower sheeting. Marks were made on the spars and the top of the sheeting to locate the rib positions. Cut the wing sheeting to size using the same method used to cut the fuselage sides. Be sure to curl the wing sheeting so the leading edge matches the rib curves.
After I installed the aileron servo leads and LEDs, the process was repeated to bond the top wing sheeting in place. Pre-shaping the top sheeting leading edge is again needed. Note that the 6mm aileron leading edge material is installed at an angle to minimize sanding.

Marking the wing’s aileron cutouts is as easy as holding the wing up to a bright light. After a little light sanding, the ailerons are ready for hinging task and installing the wingtips wrapped up the wing construction.

FINISHING UP
Bending the front and aft window material was a tedious task with many test fits needed; just as you would with flat clear plastic. The difference is foam sheets hold their shape better. The patterns shown on the plans should get you close enough. I used bass wood to make the wing struts and bonded fiber hinge material into slits cut in the tips. Screws attach the struts to their attachment points on the fuselage while

DID YOU KNOW? KEITH SPARKS

Known to his flying buddies as “Sparky,” Keith Sparks has a long and interesting modeling history. He grew up flying rubber-powered models and powered free-flight planes and went on to join the U.S. Air Force in 1976. We had a chance to catch up with Keith and here’s some of what we learned.

When did you first get involved in RC?
On my 28th birthday, I got my first 4-channel radio. Three trainers and one engine later, I soloed.

How many models have you built?
I started marking my models with large tail numbers so the guys training me would know how many models I’d been through learning to fly. This turned into a running joke with each new plane I brought to the field and continues to today, I’m at 200 RC models to date.

Tell us about your love for foam construction.
My first foam-based model went from an idea to flying model so fast that some of my wood-based designs were foam prototypes. I continued developing my foam building skills, learning from my mistakes for another 15 years. I found myself explaining how to build with foam at every fun fly I attended and this prompted me to write the book Building with Foam.

What about your website?
Parkflyerplastics.com started as a designer/kit bashing site, a place where guys could get things that I needed long ago. I was pleasantly surprised to find that ARF builders too had the desire to kit bash their models so I do what I can to help them as well.
The Glowdog

When bent, sheeted foam will hold its shape more than clear plastic. This makes window installation actually easier than what balsa builders are used to.

Flip a switch and the nighttime flying light system can change colors.

the other ends are bonded to the wing. I believe the model could be flown without the struts in place, but any aerobatics should be avoided.

IN THE AIR
Despite its six-foot wingspan, the Glowdog handles surprisingly like a park flyer. Takeoffs and landing requires very little space, which allows the Glowdog to be easily flown from neighborhood soccer field-size areas. The 3-inch wheels have no problems handling rough terrain during takeoff rolls or landing. Stall recovery only takes a foot or two to recover from and loops are effortless. Due to the model’s inherent stability, rolls are a chore. Basic flight is rather boring until the sun goes down and I light up the interior. Do your local law enforcement a favor and keep your night flights short!

For more photos and details for the onboard lighting system used in the Glowdog, go to modelairplanenews.com.

When bent, sheeted foam will hold its shape more than clear plastic. This makes window installation actually easier than what balsa builders are used to.

Easy to fly. Easy on the eye.

It may look real, but it’s really a FlyZone Select Scale RTF. The “Select” stands for premium features, like the steerable nosewheel and working shock. The 7-LED lighting system. Tinted windows and corrugated control surfaces. Factory-finished AeroCell™ parts and Fowler flaps for easier takeoffs and landings.

Can a plane that looks this good also be easy to fly? You bet. It also assembles in minutes and comes with everything you see at right.

© Copyright 2009 — 3074467
Distributed Exclusively Through: Great Planes® Model Distributors Company P.O. Box 9021, Champaign, IL 61826-9021